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Abstract. The purpose of this paper is to outline a new formulation
of statistical learning that will be more useful and relevant to the field
of robotics. The primary motivation for this new perspective is the mis-
match between the form of data assumed by current statistical learning
algorithms, and the form of data that is actually generated by robotic sys-
tems. Specifically, robotic systems generate a vast unlabeled data stream,
while most current algorithms are designed to handle limited numbers
of discrete, labeled, independent and identically distributed samples. We
argue that there is only one meaningful unsupervised learning process
that can be applied to a vast data stream: adaptive compression. The
compression rate can be used to compare different techniques, and sta-
tistical models obtained through adaptive compression should also be
useful for other tasks.

1 Introduction

One striking characteristic of human competence is that it requires many years of
learning to develop. Learning can be regarded as a form of statistical adaptation
in which the brain adjusts to data flowing into it from the senses. Recently,
researchers in the field of statistical learning have made important progress in
understanding the nature of learning and the conditions under which learning can
occur. This understanding supports the definition of several powerful learning
algorithms [1, 2].

The field of embodied artificial intelligence is also deeply concerned with the
issue of adaptation, and has recently made several important conceptual ad-
vances [3]. One such advance is the realization that in many cases good perfor-
mance can be achieved without advanced information processing, by relying on
techniques such as reactivity, self-organization, and exploitation of body dynam-
ics [4, 5]. Another achievement is the identification of a set of design principles
to guide the construction of robotic systems [3].

Unfortunately, there is not much communication between these two disci-
plines. In particular, it is difficult for roboticists to apply the strong results of
statistical learning theory to embodied agents research. This difficulty is caused
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by a mismatch between the form of data assumed by current statistical learning
algorithms and the form of data available to embodied agents. The purpose of
this paper is to argue for a new formulation of statistical learning that can be
applied to the vast unlabeled data stream generated by robotic systems. Fur-
thermore, we argue that given this type of input, there is only one meaningful
learning process that can be applied: adaptive compression. An important ad-
vantage of the view of learning as compression is that it provides a rigorous and
highly practical research methodology within which to proceed. We refer to the
hybrid field resulting from a combination of ideas from statistical learning and
embodied artificial intelligence as “Embodied Statistical Learning” (EStL).

2 Background

2.1 Statistical Learning: the Current Formulation

The goal of the field of statistical learning is to discover algorithms which build
statistical models from data. This field has developed an impressive mathemat-
ical theory [2, 6, 7] and has demonstrated strong results on various applications,
such as face detection, handwritten digit recognition, and machine translation.
The basic problem statement of statistical learning, in its current form, is given
in the first sentence of the first chapter of the great work by Vapnik [6]:

In this book we consider the learning problem as a problem of finding a
desired dependence using a limited number of observations.

Several important ideas are contained in this statement. First, a critical as-
pect of this type of learning is the limitations on the amount of available data.
Second, the goal is to find dependencies - for example, finding a rule that can
assign a label to an image (e.g. “face” or “no face”). Third, the data is assumed
to be partitioned into a number of distinct “observations”. Because of this as-
sumption of partitionability, it is then natural to assume that the samples are
independent and identically distributed (IID). A critical piece of the VC theory
is a set of probabilistic bounds on the difference between the real and empirical
performance of a model class, in terms of the complexity of the class and the
number of observations. These bounds are obtained using the assumption of IID
samples, and their purpose is to describe when it is possible to generalize from
limited data [6]. Thus, the above assumptions are essential to the theory. Other
formulations of statistical learning are mostly similar to Vapnik’s; we refer to
these collectively as CStL.

2.2 Embodied Artificial Intelligence

The subfield known as embodied artificial intelligence originated with the work
of Brooks [8, 9]. Writing in the early 1990s, Brooks was reacting to what he saw
as an unhealthy overemphasis on the physical symbol system hypothesis, which
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was a major influence on AI at the time. In this view, the key role of intelli-
gence was to use formal logic and symbolic manipulation to construct plans from
logical propositions about the world, which would be delivered by an unspeci-
fied perceptual system. The typical strategy for finding a plan was to conduct a
heuristic search in a large action space. Brooks made two important criticisms of
this approach. First, he noted that perception was a major problem in itself, and
it was näıve to assume that the “vision guys in white hats down the corridor”
would be able to obtain the necessary world descriptions [9]. Second, he argued
that search was not the right tool for intelligence. As a counter-point to the
symbol system hypothesis, Brooks offered his own physical grounding hypothe-
sis: “to build a system that is intelligent it is necessary to have its representations
grounded in the physical world” [9]. This view motivated Brooks’ research into
embodied agents, i.e. real robots operating in the real world.

The ideas of Brooks were pursued vigorously by later researchers [3–5, 10].
An important part of this work is the development of a set of design principles
to guide the construction of embodied agents [3]. The principles were obtained
through extensive experience with robotic systems and from detailed study of
biological organisms. These ideas were primarily targeted toward the physical
construction of robots, but they have important implications for the design of
learning algorithms as well. In particular, the Complete Agent Principle instructs
designers to build agents that are “autonomous, self-sufficient, embodied, and sit-
uated”. Another important idea is the Principle of Information Self-Structuring,
which states that the agent should take advantage of statistical regularities in-
duced by body-environment interactions, and should actively attempt to seek
out such regularities [5, 10, 11]. As we discuss below, it is difficult to reconcile
these principles with the current formulation of statistical learning.

3 The Setting of the Embodied Learning Problem

3.1 Two Types of Learning

To motivate the following discussion, we postulate a rough separation of learning
into two types: perceptual and behavioral. The former allows the agent to under-
stand the world, while the latter guides the agent’s choice of actions. A necessary
component of behavioral learning is reinforcement. Agents are assumed to re-
ceive a reward signal from the environment that instructs them to behave in an
adaptive way: actions that produce positive rewards are strengthened, while ac-
tions that produce negative rewards are weakened. Reinforcement learning is an
active area of research [12], and the fundamental principles are well understood.

Our view is that reinforcement is sufficient to explain behavioral learning but
not perceptual learning. Simply stated, the information from the reinforcement
signal is not sufficient to determine the huge complexity of the brain, which
has on the order of 1012 synapses. For example, it is difficult to believe that
differential reinforcement can be used to tune the synaptic weights in the lower
levels of the visual cortex.
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One can imagine constructing a Complete Agent and equipping it with two
learning mechanisms: one for behavioral learning, and one for perceptual learn-
ing. For these two learning tasks, one might reasonably choose a reinforcement
learning algorithm for the behavioral component, and a CStL algorithm for the
perceptual component. The problem with this approach is that the current for-
mulation of statistical learning is not well suited to the type of data encountered
by robots. We now outline the setting of the problem of EStL, and contrast it
to the CStL formulation. The constrast is summarized in Table 1.

Table 1. Summary of differences between problem formulation in Embodied Statistical
Learning (EStL) and the current formulation of statistical learning (CStL).

Aspect of problem EStL CStL Section

Form of data stream discrete samples 3.2

Supervisory signal scarce frequent 3.3

Volume of data vast limited 3.4

Key problem prediction recognition 3.6

Agent contribution actively structures data passively observes data 3.7

3.2 Data is a Stream

In the real world, for both robots and organisms, data arrives in the form of a
stream. No obvious method exists for partitioning the stream into samples that
can satisfy the assumptions of CStL. Any such partitioning of the stream will
destroy the IID property. If one partitions a stream of visual images into frames,
then each frame is strongly dependent on the previous frames.

The data is a stream, but it is not necessary to treat the stream simply
as a sequence of bits. For example, if the stream is a sequence of images, it is
reasonable to assume that the dimensions of the images are known. Or, if the
stream is a sequence of video, audio, and sonar data, then it is reasonable to
assume knowledge of which bits correspond to each sensory modality. In return
for giving up the assumption of discrete sample data we get a “consolation prize”:
the temporal structure of the data stream, which can and should be exploited.

3.3 Labels and Reinforcement Events are Scarce

The Complete Agent Principle instructs us to build agents that are “autonomous,
self-sufficient, embodied, and situated” [3]. When applied to learning in robotic
systems, this principle requires that the agents should learn in an unsupervised
or self-supervised way. The amount of supervisory information provided to the
agents, in the form of labeled training data and reinforcement signals, should be
strictly limited.
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In order to perform a pattern recognition task in CStL, one typically assumes
a set of data points (e.g., images) and associated labels. Usually there are as many
labels as data points. The labeling process may require a substantial amount of
human labor, and is often error-prone. For example, in an image annotation
task one must label each image with a set of words describing the objects and
activities displayed in the image. However, different people might use different
sets of words to describe an image. Also, this model of learning is fundamentally
limited to the labels: a vision system trained using labeled data to recognize car
models will not be able to determine if the car is parked or in use.

Reinforcement learning for perception faces similar limitations. Imagine we
have built a humanoid robot and want to train it to fetch coffee in an office
environment. The simplest method would be to give the robot a big reward
when it arrives with the coffee. However, this simple scheme will require the
robot to explore for years before it happens to retrieve the coffee and get the
reward. By adding some complexity to the reward signal, we can potentially
improve performance. Maybe we give the robot a small reward for obtaining the
coffee, and a larger reward for delivering it. We could then go further, defining
rewards for entering the hallway, pouring the coffee into the cup, adding sugar
and cream, and so on. We could also define negative rewards for spilling the coffee
or bumping into people. However, this violates the Complete Agent Principle,
because it requires us to provide greater and greater levels of supervision to the
robot, in the form of defining complex reward signals.

In the view of EStL we are developing, the agent is able to learn in an
unsupervised and autonomous manner. However, this learning should be thought
of as preparation, so that when supervisory information arrives, the agent can
adapt to it as quickly as possible. When the user gives the coffee fetching robot
a command, it should not have to perform a lengthy learning process; it should
already know enough about the world to execute the command. Thus, if the robot
is a humanoid, it must already have complex knowledge of grasping, walking,
the visual stimuli corresponding to coffee cups, and so on.

3.4 The Stream is Vast

Above we argued that data should be thought of as a stream. We now point out
that it is an enormous stream. Robotic systems can obtain data from cameras,
microphones, laser range finders, odometers, gyroscopes, and many other devices.

One of the great insights of statistical learning theory [6, 7] is that when the
data is limited, the model employed must be simple. There are various ways to
calculate the model complexity, but the idea is the same. A basic rule of thumb
is that the complexity of the model cannot exceed the information content of
the data being modeled.

Consider the problem of classifying handwritten digits, which can be thought
of as a “typical problem” of CStL. We wish to learn a rule that gives a good
estimate of the probability distribution p(Y |X) where Y is the label and X is the
image. In this case the data being modeled is the set of labels, each of which has
an information content of log2 10 ≈ 3.2 bits. Assuming there are 10000 samples,



6

the information content of the entire set of labels is about 32000 bits. Thus we
cannot use models that have complexity of greater than 32000 bits. The essence
of learning in this low-data regime is to find low complexity models that have
high explanatory power. The success of the Support Vector Machines can be
attributed to the fact that only a small number of parameters corresponding to
the support vectors need to be specified, and the data is separated using the
optimal separating hyperplane.

The data available to robots is enormously more vast than the 32000 bits
available in the handwritten digit recognition problem. This multiple order of
magnitude difference means that the learning problem must be thought about
in an entirely new way. In particular, the vast amount of data available justifies
the use of highly complex models. To sum up, the basic problem of CStL is: how
can one generalize well from a limited amount of data? In contrast, the basic
problem of EStL is: how can one efficiently exploit the huge amount of data to
build a complex model of the complex world?

3.5 Fast is better than Slow

This point is a combination of three distinct ideas, all of which emphasize speed
in different ways. The first idea is that an agent must react rapidly to supervisory
information when it appears, as was illustrated by the example of the coffee
fetching robot. Similarly, when considering biological situations, strong negative
reinforcement signals often relate to life-threatening events (e.g. a rabbit eating
a poisonous plant), so the agent must adapt to those signals rapidly. To allow
the behavioral learning component to adapt quickly, the perceptual learning
component must provide it with meaningful abstractions.

The second reason for emphasizing speed is a consequence of our emphasis
on learning vast data. If the computational architecture cannot process the data
efficiently, it will choke on the vast size of the stream. In CStL, the learning bot-
tleneck is the limited amount of data; in EStL it will likely be the computational
complexity of learning.

The third idea is that the learning process should be primarily online. Learn-
ing should begin immediately once the sensor data stream starts flowing, and
should proceed in a continuous fashion thereafter. Ideally, at each step the learn-
ing machine should update itself to reflect the new piece of data that has arrived.

3.6 Prediction is Critical

The claim of this section is that the ability to predict is necessary and sufficient
for intelligent behavior in the sense of optimizing future reward. To see that
prediction is sufficient for reward-optimizing behavior, consider the following
reinforcement learning strategy. We assume that the agent has experienced a
large amount of data with sensor, motor, and reward components. It has built a
model which interleaves these data types, allowing it to predict the future reward
from the sensor stimulation and motor actions. Then it predicts the future reward
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given the current stimulus and a variety of action plans, and chooses the plan
corresponding to the highest predicted reward.

To see that prediction is necessary, notice that real agents must be able to
predict that an action like jumping off a cliff will be harmful without actually
experimenting with it. This is fairly obvious, but standard reinforcement learning
algorithms do not provide a mechanism to avoid bad states without actually
visiting those states.

Note that other problems of classification, recognition, and so forth can be
thought of as subproblems of prediction. If one can recognize the numbers and
letters written on a business card, one can predict the identity of the person who
will answer the phone when the number is dialled.

Because of its relationship to reward-optimization and classification, predic-
tion can be thought of as a fundamental cognitive task. Thus, if a powerful and
general purpose prediction method can be achieved, it will bring us much closer
to the goal of intelligent machines. The critical role of prediction was recently
articulated by Hawkins [13].

3.7 Agents Influence their Own Learning

An agent learns by adapting to the vast stream of data entering its experience.
However, some types of data are better suited to the learning process than
others. For example, it is probably not very useful to observe visual data from a
television tuned to a dead channel. On the other hand, data that has a certain
kind of statistical regularity may be especially helpful in guiding the learning
process. We say that this type of data is structured.

The Principle of Information Self-Structuring discussed in Section 2.2 states
that an agent should actively attempt to induce structure in the data entering
its experience. If this can be done successfully, the learning machine will be able
to adapt more rapidly to the environment.

One mechanism of information self-structuring is the idea of intrinsic rewards
for learning, referred to as the “autotelic drive” by Steels [11]. In order to imple-
ment an autotelic drive, the learning machine reports a signal that characterizes
the degree of information structure in the incoming stimuli. It should also reflect
the extent to which the information structure is useful in improving the perfor-
mance of the learning machine: even if a certain pattern is highly structured, it
may not be useful to observe it repeatedly after it has been thoroughly learned.
This intrinsic reward is combined with external reward to guide behavior.

Another mechanism of information self-structuring is morphological compu-
tation, which is the idea that the body can act as a computational device to
reduce the cognitive burden on the brain [14]. For example, it can be shown that
a fly’s eye is morphologically suited to the problem of detecting motion, because
of the curvature of the lens [15]. The lens preprocesses the incoming sensory data
in such a way as to simplify the computational problem of motion detection.

The Principle of Information Self-Structuring does not fit easily into the CStL
paradigm. With the important exception of research in active learning [16], most
CStL algorithms assume that the agent itself plays no part in the selection of data
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points used for training. This is required because if the robot uses information
from the first N

2 data points to decide how to select the next N
2 samples, the

IID assumption breaks down. Thus, the CStL theory does not provide insight
regarding how to implement an autotelic drive, or how to design agent bodies
to facilitate fast learning.

4 Synthesis: Adaptive Compression

Historically, there have been two main paradigms in statistical learning. The
first is that of learning as induction, described by the Vapnik quote above. The
second is the view of learning as compression, which has its roots in the idea of
Minimum Description Length modeling [7]. There is a deep relationship between
induction and compression [6, 7].

In the above discussion, we described what we consider to be the proper
inputs to the learning algorithm. We are now faced with the question of what
the learning algorithm should actually do with the input. We claim that the
only meaningful learning process that can be performed on the basis of a vast
stream of unlabeled data is adaptive compression. Specifically, the learning al-
gorithm should incrementally update a statistical model so as to reduce the bit
rate per unit time required to represent the incoming data stream. This view
connects directly to the idea of redundancy reduction which has been proposed
as a fundamental principle explaining the function of the cortex [17].

Compared to the compression view, the induction view may seem more at-
tractive for practical reasons. A program that can determine if a face is present
in an image may seem more useful than a program that can compress images
with faces in them. Thus, to further justify the goal of compression, we pro-
pose the following hypothesis: statistical models obtained through the adaptive
compression process will be useful for other applications. There is a variety of
evidence for this hypothesis. In recent work by Hinton et al., it is demonstrated
that building a generative model of handwritten digit images is useful in recog-
nizing their labels [2]. Also, in the field of statistical natural language processing,
improvements in the language model immediately yield improvements in appli-
cations such as speech recognition and machine translation [18]. In both cases,
the model is obtained by finding a set of parameters that minimizes the log-
likelihood of the original data (text or digit images); this process is basically
equivalent to compression.

Note also the strong link between compression and prediction. If one can pre-
dict a data stream, then one can compress it. Thus while we use the compression
rate for comparison purposes because it is a hard number, what we are really
measuring is an algorithm’s ability to predict.

It is important to note that this view is agnostic with regard to the choice
of computational approach (e.g. dynamical systems or physical symbol systems)
underlying the learning process. Given a computational model, it is easy to con-
struct a compression algorithm on top of it. Thus the compression rate can be
used by advocates of various perspectives on cognition to provide strong quanti-
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tative evidence for their views. One simply constructs a compression algorithm
inspired by a particular idea about cognition and applies it to some large dataset
(ideally, a benchmark dataset). If the new algorithm achieves a significant reduc-
tion in compressed data size, this provides strong quantitative evidence for the
cognitive model. Thus, the view of learning as compression supports a rigorous
methodology, and we consider this to be one of the major arguments in favor
of it. This rationale for using compression rates to quantify progress in artificial
intelligence research was recently articulated by Mahoney [19].

As an example of how the compression methodology can benefit embodied
agents research, consider the work of Tani and Nolfi [20], which describes a
method for hierarchical learning of different categories of sensory-motor data
generated by a mobile robot. The authors show that the recurrent neural network
modules self-organize such that each module becomes an expert at one type of
data. This is an interesting result, but it is difficult to compare the method to
other possible techniques. If the paper reported the compression rate achieved
by the system on the sensory-motor data, it would be a much more powerful
vindication of the method. In work using a similar experimental setup, but a
very different modeling scheme, we showed how the compression rate can be used
as a performance measure in cases where there is no obvious task to perform
(i.e., the robot is simply exploring without a specific goal) [21]. The important
result here is that the statistical model obtained in this process is useful for other
tasks such as localization, thus supporting the hypothesis given above. However,
our modeling method is fairly simplistic; it is likely that other methods (such
as the one proposed by Tani and Nolfi) will provide better performance. The
compression rate should allow us to select the best general method.

5 Conclusion

The goal of Embodied Statistical Learning is to fuse together the strong mathe-
matical theory of statistical learning with the design principles of Embodied AI.
This requires a new setting for the learning problem, because of the mismatch
between the type of data available to embodied agents, and the type of data as-
sumed by the current theories. In the new formulation, the input data is a vast
unlabeled stream which is actively structured by the agent. We argued that the
only meaningful learning process that can be applied to a vast unlabeled data
stream is adaptive compression. Compression is equivalent to prediction, and al-
lows for rigorous comparisons of results. We also hypothesize that the statistical
model obtained through compression will be useful for other applications.

Compared to CStL, we consider EStL to be a more realistic setting of the
learning problem. It may also be an easier setting, for the following reasons.
First, the agent can exploit the temporal structure of the data stream. Second,
the agent can perform information self-structuring. But the most important
reason is that the amount of data available is enormous. The exploitation of this
vast data resource may allow us to construct models of complexity comparable
to the human brain.
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